If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-2=230
We move all terms to the left:
x^2-2-(230)=0
We add all the numbers together, and all the variables
x^2-232=0
a = 1; b = 0; c = -232;
Δ = b2-4ac
Δ = 02-4·1·(-232)
Δ = 928
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{928}=\sqrt{16*58}=\sqrt{16}*\sqrt{58}=4\sqrt{58}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{58}}{2*1}=\frac{0-4\sqrt{58}}{2} =-\frac{4\sqrt{58}}{2} =-2\sqrt{58} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{58}}{2*1}=\frac{0+4\sqrt{58}}{2} =\frac{4\sqrt{58}}{2} =2\sqrt{58} $
| 1y+10=180 | | 2(6x+9-3x)=6x+21* | | 1.6x=0.256 | | 60=x(x-7) | | 0.3(4+2x)-4=3 | | 4/8=m/5 | | (3)/(5)f+24=4-(1)/(5)f | | 2f-10=-2 | | 5x6x=3x+20 | | 7(b+1)=14b= | | 9+2s=7 | | 5x-1=296 | | (9y)+(9y)+(8y+16)=180 | | 2(x-3)^2=50 | | -3=7a-10 | | x+6=8+3x | | -6+2q=6 | | 96=-71x | | -7+4r=9 | | 5/14=h/8 | | 2.5x+3.35x+8=6.2x-10 | | 12=a/36+17A= | | 8+2z=2 | | -2x-5=-x=3 | | 22/10x+2=3/5x+10 | | -4(1+3v)=-100 | | 7(n−1)=−2(3+n) | | 7(x+6)=-69 | | 3x-1+3x+8=3x+3 | | -7x^2+7x+16=0 | | 12-5a=2a-30 | | 3x-5=7-9 |